REACTIONS OF EPOXIDES PART XVI^{*}.

THE BORON TRIFLUORIDE CATALYSED REARRANGEMENT OF

 3α -ACETOXY-5, 6α -EPOXY-5 α -CHOLESTANE.

J. M. Coxon, M. P. Hartshorn, C. N. Muir and K. E. Richards Department of Chemistry, University of Canterbury, Christchurch, New Zealand

(Received in USA 15 June 1967)

The greater yield (61%) of the 6-ketone (2a) from 3α -acetoxy-5, 6α -epoxy- 5α -cholestane (1a) compared with the yield (34%) of 6-ketone (2b) from the corresponding 3-deoxy compound has been ascribed¹ to the energetically favourable conformational change, involving the 3-acetoxy group, in the formation of the A, B-<u>cis-6-ketone</u> (2a). Reaction of the 3β -acetoxy epoxide (1c) with BF₃-etherate gave the fluorohydrin (3b; 62%). The non-formation of the 6-ketone (2c) was attributed to the unfavourable conformational change of the 3β -acetoxy group in that reaction ptah, while the apparent absence of the fluorohydrin (3a) from the 3α -acetoxy compound (1a) was ascribed to the non-bonded interactions between the 3α - and 5α - substituents in the product.

It has been shown² that the 3, 3-ethylenedioxy- 5α , 6α -epoxide (1d) gave the fluorohydrin (3c; 62%) on reaction with BF₃-etherate. In view of the apparently slow rate of reaction¹ of the 3α -acetoxy compound (1a) we re-examined the rearrangement of (1a) to determine whether the fluorohydrin (3a) was formed rapidly and then underwent further reaction to the observed product(s) (2a) (cf. ref. 3).

In our hands the reaction of the 3α -acetoxy epoxide (1a) with BF₃-etherate in dry benzene, using the same concentrations of reagents as Henbest <u>et al</u>.¹ but with a reaction time of 25 sec. (cf. Henbest <u>et al</u>.,¹ 5 min. and 14 hr.), gave a crude product shown (TLC) to contain at least six compounds. This mixture was resolved into its pure components by chromatography on deactivated alumina. The product composition was markedly different from that reported earlier by Henbest et al.¹

Elution with light petroleum-benzene (9:1) gave the fluorohydrin (3a; 8%), m.p. $114-115^{\circ}$, ν_{max} 3599, 3575 (OH) and 1735 cm⁻¹ (OAc). The assigned structure was confirmed by the NMR spectrum

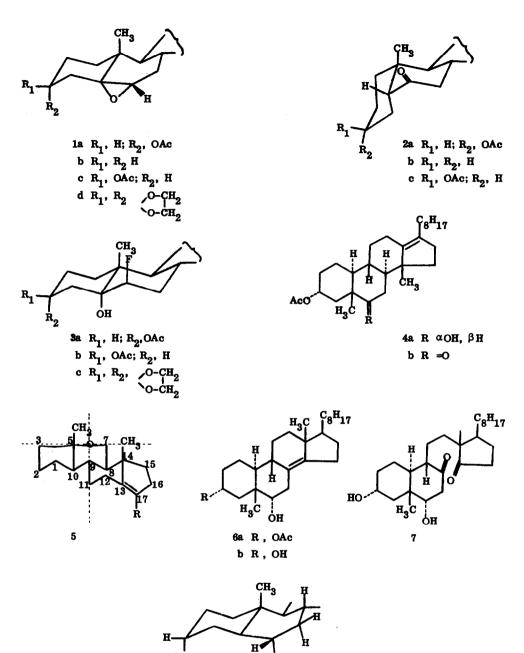
^{*} Part XV: J. W. Blunt, M. P. Hartshorn and D. N. Kirk, J. Chem. Soc. in press.

Determined at 60 Mc for CDCl₂ solutions.

which exhibited signals, doublet centred at 4.20 ppm (J 50 cps), 6^{α} -H; triplet centred at 5.28 ppm (J 3.6 cps), 3β -H; three proton doublet centred at 1.02 ppm (J 5 cps), C^{19} H₃. Further, adsorption of the fluorohydrin (3a) on alumina followed by dlution with ether gave the epoxide (1a).

Further elution with light petroleum-benzene (9:1) gave the 6-ketone (2a; 17%) containing (TLC) a trace of a second compound. Crystallisation of the crude 6-ketone from pentane gave material with physical constants identical with those quoted by Henbest <u>et al.</u>¹ The assignment of structure was confirmed by IR, 1734 (OAc) and 1704 cm⁻¹ (six membered ring ketone), and NMR spectra, multiplet (1H) centred at 4.58 ppm $(W\frac{1}{2}$ 18 cps), 3α -H.

Further elution with the same solvent gave the backbone rearranged⁴ compound (4a; 37%) as an oil. The elemental analysis was consistent with the molecular formula $C_{29}H_{48}O_3$. The presence of a tetrasubstituted double bond was indicated by a positive tetranitromethane test, UV spectrum ϵ_{207} 7,600 and by the absence of signals due to vinylic protons in the NMR spectrum. The NMR spectrum of this hydroxyacetate (4a) (γ_{max} 3500 (OH) and 1734 cm⁻¹ (OAc)) exhibits signals, multiplet (1 H) centred at 3.38 ppm ($W_{\frac{1}{2}}$ 5 cps), equatorial 6 β -H; multiplet (1 H) centred at 4.85 ppm ($W_{\frac{1}{2}}$ 16 cps), axial 3 β -H; singlet (3H) at 0.91 ppm, 5 β -CH₃; doublet (3H total) centred at 0.95 ppm (J 6 cps), C²¹H₃ was consistent with the assigned structure. The location of the double bond in the 13,17- position followed from the collapse of the C²¹H₃ doublet to a singlet on double irradiation with -88 cps, thus defining the 20-H at 2.42 ppm as a proton in an allylic position. The presence of an inverted backbone in the hydroxyacetate (4a) is indicated by the character of the signals due to the 3 β - and 6 β - protons in the NMR spectrum and by the ORD data for the corresponding 6-ketone (4b) obtained by CrO₃-acetone oxidation of (4a). The ketone (4b), m. p. 108-109^o, [α]_D +81.5^o, γ_{max} 1734 (OAc) and 1704 cm⁻¹ (six membered ring carbonyl) gave a positive Cotton curve <u>a</u> + 122 (in MeOH), consistent with the structure (5). The NMR spectrum of (4b) exhibited a multiplet centred at 4.85 ppm (W¹₂ 18 cps), 3 β -H.


Elution with benzene gave an oil shown (TLC) to be a mixture which was separated by further chromatography into its components, the rearranged 8,14-olefin⁵ (6a; 27%) as an oil and a second oil (4%) which was not examined further. The location of the double bond in (6a) at the 8,14-position followed from the physical data reported below. The presence of a tetrasubstituted double bond was indicated by a positive test with tetranitromethane, the lack of signals due to vinylic protons in the NMR spectrum and by the UV spectrum ϵ_{207} 12,900. The high value for the extinction coefficient for the end absorption in the UV spectrum strongly suggested⁶ the presence of an 8,14-olefin system. This supposition was confirmed by ozonolysis of (6b), obtained by hydrolysis of (6a), which yielded the diol-diketone (7) as an oil, ν_{max} 1750 (five membered ring carbonyl) and 1704 cm⁻¹ (six membered ring carbonyl). The 5 β_1 10 α -nature of the A/B-ring junction in (6a) was further confirmed by the NMR spectrum of (6a) which exhibited a broad multiplet (1H) centred at 5.30 ppm ($W_{\overline{2}}^{1}$ 20 cps), axial 3 β -H.

It is clear that not only does the reaction of the 3α -acetaxy- 5α , 6α -epoxide (1a) with BF₃-etherate proceed predominantly (81:8 of known products) by C₅-O cleavage but that also subsequent 19-methyl migration is preferred (64:17) to the alternative 6-hydride migration. This pattern of results may be rationalized on the basis of a tendency for the preferred C₅-O cleavage of the epoxide to be accompanied by conformational changes leading to a carbonium ion (8) in which ring B adopts a skew form. This mode of reaction allows for maximum orbital overlap between the orbitals of the departing epoxide oxygen atom and C-5, for eclipsing of the C₆-H bond and the 4, 5-bond (a poor situation for the hydride migration), and for locating the 10, 19 bond perpendicular to the plane of the C-5 carbonium ion, favourably disposed for a 1, 2shift of the angular methyl group. The relatively low yield (6%) of fluorohydrin from the 3α -acetate (1a) compared with the 3β -epimer (1c) may be accounted for in terms of the dipole-dipole interaction between the BF₃ coordinated axial 3α -acetate group and the 5α -O-⁶BF₃ function during fluorohydrin formation from the 3α -acetate (1a); this feature does not arise in the 3β -acetate (1c). It should be noted that BF₃ coordination with the less basic ethylenedioxy ketal oxygen atoms (compared with the carbonyl oxygen atom of an acetate group) is more likely to occur at the less hindered 3β -oxygen atom magnifying the 3β -O rather than the 3α -O dipole and thus not opposing fluorohydrin formation by dipolar repulsion.

No evidence was obtained which would point to fluorohydrin intermediacy in the formation of the other products.

References

- 1. H. B. Henbest and T. I. Wrigley, J. Chem. Soc., 4596, 4765 (1957).
- 2. A. Bowers, L. Ibanez and H. J. Ringold, Tetrahedron, 7, 138 (1959).
- 3. J. W. Blunt, M. P. Hartshorn and D. N. Kirk, Tetrahedron, 21, 559 (1965).
- J. W. Blunt, J. M. Coxon, M. P. Hartshorn and D. N. Kirk, <u>Tetrahedron</u>, <u>23</u>, 1811 (1967); and references cited therein.
- 5. M. P. Hartshorn and D. N. Kirk, Tetrahedron Letters, 3913 (1966).
- 6. P. Bladon, H. B. Henbest and G. W. Wood, J. Chem. Soc., 2737 (1952).

AcO

8